

The Green Evolution of Ethereum

Ethereum's Sustainability Journey

07.04.2024 Beatrix Marosvölgyi Matthias Hafner

Calculation of the resource consumption

POW Ethereum

The Merge and POS Ethereum

Dencun upgrade

Discussion

Calculation of the Resource Consumption

Life-cycle assessment (LCA)

Life-cycle assessment: Standard method to measure environmental impacts associated with a product's life-cycle.

Environmental impacts connected to inputs and emissions to soil, air, water...:

- Energy consumption (MJ)
- Greenhouse gas (GHG) emissions (CO₂ eq.)
- Water usage (m³)
- Waste generation (kg)

The most studied impacts of blockchains

The least studied impacts of blockchains

	Consensus M.	Redundancy
Hardware	$POW \rightarrow POS$	L2 & Sharding
Software	$POW \rightarrow POS$	L2 & Sharding

Source: carboncollective.co

It is fairly difficult to conduct a complete life-cycle assessment of blockchains due to their decentralized nature and lack of data.

POW Ethereum

Understanding the hash (technical background)

POW Ethereum

Results

Other source of energy consumption in POW-Ethereum besides mining: Smart contracts BUT Relative to mining, negligible amount.

Blockchain	Annualised electricity consumption (GWh)	Annualised carbon footprint (t CO ₂ eq.)	Annualized number of TX
Ethereum pre-Merge	22'900 - 21'410	11.02 Mio. – 10.26 Mio.	1'751'094'429 (implied by gas)
Bitcoin	89'440	45.32 Mio.	74'989'250

In POW, with increasing hardware efficiency and popularity, the network difficulty is increasing and thus the number of calculations constantly grows.

The Merge and POS Ethereum

The effect of the Merge

- Motivations: Larger scalability, faster transactions with less energy consumption than POW
- When: Completion on 15.09.2022
- How: Merge of the Mainnet (POW) and the Beacon Chain, where POS was already being tested before the Merge.

	Consensus M.	Redundancy
Hardware	$POW \rightarrow POS$	L2 & Sharding
Software	$POW \rightarrow POS$	L2 & Sharding

Source: https://ccaf.io/cbnsi/ethereum/ethereum_merge

[®] The Merge led to a 99.9% decrease in energy consumption and carbon footprint.

cryptecon center for cryptoeconomics

The Merge and POS Ethereum

The effect of a consensus mechanism change

Change from POW to POS **= change of security provision** from doing work, to providing security with financial stake.

→ The **work-related electricity consumption** and need for highly specialized hardware disappears.

Remaining electricity consumption =

Smart contract execution + simpler hardware electricity consumption + software electricity consumption

Result: Drastic decrease of environmental impact.

Source	Annualised electricity consumption (GWh)	Annualised carbon footprint (t CO_2 eq.)
Ethereum pre-Merge	21′410 – 22′900	10.3 – 11.0 Mio.
Ethereum post-Merge	1.96 – 2.6	750 - 870
PayPal	259.9	517′600

Per transaction comparison

Source	PayPal	Ethereum Post-Merge
Number of TX	22'300'000'000	1'751'094'429 (ETH) 583'698'142 (ERC20) (implied by gas)
Electricity consumption per transaction	11.7 Wh	1.3 Wh (ETH) 3.9 Wh (ERC20)
Carbon footprint per transaction	23.2 g CO ₂ eq.	0.5 g CO ₂ eq. (ETH) 1.5 g CO ₂ eq. (ERC20)

Ethereum as a Proof-of-Stake blockchain is greener as PayPal, both in terms of carbon footprint and electricity consumption.

The Dencun Upgrade

Technical background

Dencun-Upgrade consists of 9 EIPs.

- **EIP 4844:** most important EIP, the Proto-danksharding, introduces blobs.
- Blobs: Temporary data storage (stored for 18 days on the Mainnet). Only these are being verified, not every transaction → reduces redundant calculations, increases throughput → decreases L2 gas fees

	Consensus M.	Redundancy
Hardware	$POW \rightarrow POS$	L2 & Sharding
Software	$POW \rightarrow POS$	L2 & Sharding

The Dencun-upgrade not only decreases L2 gas fees and increases scalability, but also reduces redundancy and makes Ethereum greener.

Source: Tweet of Vitalik Buterin

The Dencun Upgrade

The effect of L2 and proto-danksharding

L2 and proto-danksharding reduces environmental impact

- L2 and proto-danksharding allows more efficient allocation of resources by reducing "unnecessary" redundancy
- Effects on fees are mostly linear in energy and environmental aspects, as L2 fees are mainly driven by L1 (optimistic roll-ups).

	Redundancy	
L1 Ethereum	USD 2	10-100x
L2 Optimistic Rollups	USD 0.02	more efficient!
Of which Dencun	80-90% reduction (last 30 days)	

L2 and proto-danksharding reduce environmental impact by 10-100x.

L2 Fees after the Dencun upgrade

L2 Fees

Ethereum Layer-1 is expensive. How much does it cost to use Layer-2?

			All L2s Full Rollups
	Name	Send ETH	Swap tokens
7	Arbitrum One	< \$0.01	\$0.01 ∨
op	Optimism	< \$0.01	\$0.02 🗸
* *	zkSync Era	\$0.02	- 🗸
ŀ	Loopring	\$0.10	\$0.85 🗸
<≯	zkSync Lite	\$0.13	\$0.31 ~
ଡ	Polygon zkEVM	\$0.33	\$1.18 ~
Ð	DeGate	\$0.36	\$0.30 🗸
۶	Ethereum	\$2.10	\$10.50 🗸

Source: l2fees.info

Ethereum's strategy to increase throughput aligns with environmental goals

Discussion

Ethereum's strategy:

- Dencun is the start of *The Surge*-Era of Ethereum.
- **Goal of this era**: increasing scalability to 100'000 transactions per second.

Two main sources that determine the environmental impact:

- Consensus mechanism: The switch from energy (POW) to assets (POS) as security, reduces impact on the environment by 99.9% making Ethereum already greener than PayPal as a transaction layer.
- Redundancy: Temporary data storage (proto-danksharding) and aggregated verification (L2) reduce impact by approx. another 99%, making Ethereum significantly greener than other payment systems.

 \rightarrow Ethereum's strategy to increase throughput aligns with environmental goals.

Future?

- More separation of tasks (e.g., proposer and builder?)
- Danksharding allows further reduction of redundancy, resulting in either lower validator specifications or higher throughput.
- Better understaning of the impact of various L2 types (i.e., zk-Rollups)?

center for cryptoeconomics

Thank you for your attention!

Beatrix Marosvölgyi beatrix@cryptecon.org Matthias Hafner

matthias@cryptecon.org

Center for Cryptoeconomics, c/o Swiss Economics, Ottikerstrasse 7, CH-8006 Zürich <u>www.cryptecon.org</u>

